# Millia Institute of Technology Rambagh, Purnea

Affiliated to Bihar Engineering University, Patna

## NAAC Accredited & ISO 9001:2015



# **SYLLABUS**

## **Department of Computer Science & Engineering**

**6th SEMESTER** 

### Semester VI (Third year] Branch/Course Computer Science & Engineering

-

| Course<br>Code | Paper Title                                                       | L | т | Ρ | Credits | branch |
|----------------|-------------------------------------------------------------------|---|---|---|---------|--------|
|                | Compiler Design                                                   | 3 | 0 | 4 | 5       | 105    |
|                | Computer Networks                                                 | 3 | 0 | 4 | 5       | 105    |
|                | Graduate Employability Skills and Competitive Courses (GATE, IES, |   |   |   |         |        |
|                | etc.)                                                             | 3 | 0 | 0 | 0       | 105    |
|                | Machine Learning                                                  | 3 | 1 | 0 | 4       | 105    |
|                | MOOCs / SWAYAM / NPTEL Courses - 2                                | 3 | 0 | 0 | 3       | 105    |
|                | Professional Elective Lab-I                                       | 0 | 0 | 2 | 1       | 105    |
|                | Program Elective- I                                               | 3 | 0 | 0 | 3       | 105    |
|                | Program Elective- II                                              | 3 | 0 | 0 | 3       | 105    |
|                | Project – I                                                       | 0 | 0 | 4 | 2       | 105    |

## Semester VI (Third year] Branch/Course Computer Science & Engineering

| PCC CS 601     | Complier Design                      | 3L:0T: 4P | 5 Credits |
|----------------|--------------------------------------|-----------|-----------|
| Pre-requisites | Formal Language & Automata<br>Theory |           |           |

#### **Objectives of the course**

- To understand and list the different stages in the process of compilation.
- Identify different methods of lexical analysis
- Design top-down and bottom-up parsers
- Identify synthesized and inherited attributes
- Develop syntax directed translation schemes
- Develop algorithms to generate code for a target machine
- To study the underlying theories in designing of a compiler
- The study especially consider the imperative languages

#### **Detailed contents**

#### Module 1

Introduction: Phases of compilation and overview.

**Lexical Analysis (scanner):** Regular languages, finite automata, regular expressions, from regular expressions to finite automata, scanner generator (lex, flex).

#### Module 2

**Syntax Analysis (Parser):** Context-free languages and grammars, push-down automata, LL(1) grammars and top-down parsing, operator grammars, LR(O), SLR(1), LR(1), LALR(1) grammars and bottom-up parsing, ambiguity and LR parsing, LALR(1) parser generator (yacc, bison).

#### Module 3

**Semantic Analysis:** Attribute grammars, syntax directed definition, evaluation and flow of attribute in a syntax tree.

**Symbol Table:** Its structure, symbol attributes and management. Run-time environment: Procedure activation, parameter passing, value return, memory allocation, and scope.

### Lecture: 9 hrs.

#### Lecture: 6 hrs.

## Lecture: 10 hrs.

#### Module 4

#### Lecture: 10 hrs.

**Intermediate Code Generation:** Translation of different language features, different types of intermediate forms.

**Code Improvement (optimization) Analysis:** control-flow, data-flow dependence etc.; Code improvement local optimization, global optimization, loop optimization, peep-hole optimization etc.

**Architecture dependent code improvement:** instruction scheduling (for pipeline), loop optimization (for cache memory) etc. Register allocation and target code generation.

#### Module 5

#### Lecture: 5 hrs.

**Advanced topics:** Type systems, data abstraction, compilation of Object Oriented features and non-imperative programming languages.

#### **Suggested Books:**

1. Compilers Principles Techniques And Tools by Alfred V. Aho, Ravi Sethi, Jeffery D. Ullman. Pearson Education.

#### Suggested Reference Book

1. Compiler Design by Santanu Chattopadhyay. PHI

2. Modern Compiler Design by Dick Grune, E. Bal. Ceriel, J. H. Jacobs, and Koen G. Langendoen, Viley Dreamtech.

#### **Course Outcomes**

After the completion of course, students can able to able to:

- 1. Develop the lexical analyser for a given grammar specification.
- 2. Design top-down and bottom-up parsers for a given parser specification
- 3. Develop syntax directed translation schemes
- 4. Develop algorithms to generate code for a target machine

| PCC CS 601P | Complier Design Lab |
|-------------|---------------------|
|             |                     |

Hands-on experiments related to the course contents of PCC CS 601.

| PCC CS 602     | Computer Networks       | 3L:0T: 4P | 5 Credits |
|----------------|-------------------------|-----------|-----------|
| Pre-requisites | PCC CS 402 & PCC CS 403 |           |           |

#### **Objectives of the course**

- To develop an understanding of modern network architectures from a design and performance perspective.
- To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).
- To provide an opportunity to do network programming
- To provide a WLAN measurement ideas.

#### **Detailed contents**

#### Module 1

**Data communication Components:** Representation of data and its flow Networks , Various Connection Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless LANs, Connecting LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing - Frequency division, Time division and Wave division, Concepts on spread spectrum.

#### Module 2

**Data Link Layer and Medium Access Sub Layer:** Error Detection and Error Correction -Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols -Stop and Wait, Go back – N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA, CSMA/CD,CDMA/CA

#### Module 3

**Network Layer:** Switching, Logical addressing – IPV4, IPV6; Address mapping - ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols.

#### Module 4

**Transport Layer:** Process to Process Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.

#### Lecture 8 hrs.

#### Lecture 8 hrs.

### Lecture 8 hrs.

## Lecture 8 hrs.

#### Module 5

**Application Layer:** Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography.

#### Suggested books

- 1. Data Communication and Networking, 4<sup>th</sup> Edition, Behrouz A. Forouzan, McGraw- Hill.
- 2. Data and Computer Communication, 8<sup>th</sup> Edition, William Stallings, Pearson Prentice Hall India.

#### Suggested reference books

- 1. Computer Networks, 8th Edition, Andrew S. Tanenbaum, Pearson New International Edition.
- 2. Internetworking with TCP/IP, Volume 1, 6<sup>th</sup> Edition Douglas Comer, Prentice Hall of India.
- 3. TCP/IP Illustrated, Volume 1, W. Richard Stevens, Addison-Wesley, United States of America.

#### **Course Outcomes**

After the completion of course, students can able to able to:

- 1. Explain the functions of the different layer of the OSI Protocol.
- 2. Draw the functional block diagram of wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs) and can able to describe the function of each block.
- 3. Program for a given problem related TCP/IP protocol.
- 4. Configure DNS DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls using open source available software and tools.

| PCC CS 602P | Computer Networks Lab |
|-------------|-----------------------|
|             |                       |

Hands-on experiments related to the course contents of PCC CS 602.

| PCC CS 603 | Machine Learning | 3L: 1T:0 P | 4 Credits |
|------------|------------------|------------|-----------|
|            |                  |            |           |

#### **Objectives of the course**

- To learn the concept of how to learn patterns and concept from data.
- Design and analyze various machine learning algorithms and their applications in recent trends.
- Evaluate the various factors of machine learning to measure the performance.
- Understand basic of machine learning's application in recent trend of technology.

#### **Detailed contents**

#### Module 1

Introduction: Basic definitions, Linear Algebra, Statistical learning theory, types of learning, hypothesis space and Inductive bias, evaluation and cross validation, Optimization.

#### Module 2

Statistical Decision Theory, Bayesian Learning (ML, MAP, Bayes estimates, Conjugate priors), Linear Regression, Ridge Regression, Lasso, Principal Component Analysis, Partial Least Squares

#### Module 3

Linear Classification, Logistic Regression, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Perceptron, Support Vector Machines + Kernels, Artificial Neural Networks + Back Propagation, Decision Trees, Bayes Optimal Classifier, Naive Bayes.

#### Module 4

Hypothesis testing, Ensemble Methods, Bagging Adaboost Gradient Boosting, Clustering, K-means, K-medoids, Density-based Hierarchical, Spectral.

#### Module 5

Expectation Maximization, GMMs, Learning theory Intro to Reinforcement Learning, Bayesian Networks.

#### Suggested books:

- 1. Machine Learning. Tom Mitchell. First Edition, McGraw-Hill, 1997
- 2. Introduction to Machine Learning Edition 2, by Ethem Alpaydin

Lecture 8 hrs.

#### Lecture 8 hrs.

#### Lecture 8 hrs.

Lecture 8 hrs.

## Lecture 8 hrs.